MapR Expands Big Data Innovations with New MapR Ecosystem Pack

San Jose, CA - 30 November 2016

Data access, performance enhancements, and expanded support for next generation streaming architectures 

MapR Technologies, Inc., provider of the industry’s only Converged Data Platform, today announced the next major release of the MapR Ecosystem Pack program, a broad set of open source ecosystem projects that enable big data applications running on the MapR Converged Data Platform while ensuring inter-project compatibility. These latest enhancements also add flexible access and provide new capabilities for streaming applications.

“We’re always looking to give our customers immediate access to cutting-edge tools they need to be successful in their big data deployments,” said Will Ochandarena, senior director, product management, MapR Technologies. “Spark and Drill continue to be two of the most widely adopted ecosystem projects, and this release makes them even easier to adopt for production use.”

The MapR Ecosystem Pack removes the complexity of coordinating many different community projects and versions. MapR develops, tests, and integrates open source ecosystem projects such as Apache Drill, Spark, Parquet, Hive, and Myriad, among others. The new MapR Ecosystem Pack version 2.0 now includes:

  • Support for the Kafka REST API and Kafka Connect, opens up new ways to access event data in MapR Streams. The Kafka REST Proxy for MapR Streams lets customers use any development language in any environment that supports HTTP to work with streaming data. Kafka Connect for MapR Streams delivers a framework for standardized access between MapR Streams and the most popular data sources and targets. These capabilities further enable customers to build IoT-scale, global systems of record with MapR Streams by allowing embedded devices like microcontrollers to produce and consume data in real time using REST, while integrating data with other systems like RDBMSs and search engines.
  • Support for Spark 2.0.1 adds new features such as whole stage code generation that make programs run faster and thus deliver quicker results. Also, the in-memory columnar feature stores data in an optimized format in RAM to allow faster analytical queries.
  • Low latency queries, optimized BI experience, and dynamic UDFs come to Drill 1.9. Key improvements speed up large scale I/O intensive analytics queries up to 33% and advanced filtering and pushdown capabilities reduce I/O by up to 70% for TPC-H queries. The new release enhances metadata query performance and introduces flexible JOIN syntax that optimizes Drill usage with industry standard BI tools.
  • MapR Installer Stanzas enable API-driven installation of MapR clusters on-premises or in the cloud. Part of the Spyglass Initiative, this feature helps users build a Stanza, which is a configuration file that describes a cluster and executes it programmatically to automate new deployments. This is especially useful for quickly deploying elastic clusters across the cloud.

The MapR Ecosystem Pack version 2.0 will be available in December. For more information, visit here.

MapR enables organizations to create disruptive advantage and long-term value from their data with the industry’s only Converged Data Platform, which delivers distributed processing, real-time analytics, and enterprise-grade requirements across cloud and on-premise environments–while leveraging the significant ongoing development in open source technologies including Spark and Hadoop. Organizations with the most demanding production needs, including sub-second response for fraud prevention, secure and highly available data-driven insights for better healthcare, petabyte analysis for threat detection, and integrated operational and analytic processing for improved customer experiences, run on MapR. A majority of customers achieves payback in fewer than 12 months and realizes greater than 5X ROI. MapR ensures customer success through world-class professional services and with free on-demand training that 50,000 developers, data analysts and administrators have used to close the big data skills gap. Amazon, Cisco, Google, HPE, Microsoft, SAP, and Teradata are part of the worldwide MapR partner ecosystem. Investors include Future Fund, Google Capital, Lightspeed Venture Partners, Mayfield Fund, NEA, Qualcomm Ventures and Redpoint Ventures. 

Become a bobsguide member to access the following

1. Unrestricted access to bobsguide
2. Send a proposal request
3. Insights delivered daily to your inbox
4. Career development